Nonlinear methods for model reduction
نویسندگان
چکیده
Typical model reduction methods for parametric partial differential equations construct a linear space V n which approximates well the solution manifold M consisting of all solutions u ( y ) with vector parameters. In many problems numerical computation, nonlinear such as adaptive approximation, -term and certain tree-based may provide improved efficiency over methods. Nonlinear replace by Σ . Little is known in terms their performance guarantees, most existing experiments use parameter dimension at two. this work, we make step towards more cohesive theory reduction. Framing these general setting library give first comparison standard approximation any compact set. We then study manifolds parametrized elliptic PDEs. specific example where domain split into finite number N rectangular cells, affine spaces m assigned to each cell, guarantees respect accuracy versus
منابع مشابه
Model Reduction for Nonlinear Control Systems using Kernel Subspace Methods
We introduce a data-driven model approximation method for nonlinear control systems, drawing on recent progress in machine learning and statistical dimensionality reduction. The method is based on embedding the nonlinear system in a high (or infinite) dimensional reproducing kernel Hilbert space (RKHS) where linear balanced truncation may be carried out implicitly. This leads to a nonlinear red...
متن کاملNonlinear Model Reduction for RTCVD
In this paper, we examine alternative methods for reducing the dimensionality of nonlinear dynamical system models arising in control of rapid thermal chemical vapor deposition (RTCVD) for semiconductor manufacturing. We focus on model reduction for the ordinary differential equation model describing heat transfer to, from, and within a semiconductor wafer in the RTCVD chamber. Two model reduct...
متن کاملislanding detection methods for microgrids
امروزه استفاده از منابع انرژی پراکنده کاربرد وسیعی یافته است . اگر چه این منابع بسیاری از مشکلات شبکه را حل می کنند اما زیاد شدن آنها مسائل فراوانی برای سیستم قدرت به همراه دارد . استفاده از میکروشبکه راه حلی است که علاوه بر استفاده از مزایای منابع انرژی پراکنده برخی از مشکلات ایجاد شده توسط آنها را نیز منتفی می کند . همچنین میکروشبکه ها کیفیت برق و قابلیت اطمینان تامین انرژی مشترکان را افزایش ...
15 صفحه اولModel order reduction for nonlinear Schrödinger equation
We apply the proper orthogonal decomposition (POD) to the nonlinear Schrödinger (NLS) equation to derive a reduced order model. The NLS equation is discretized in space by finite differences and is solved in time by structure preserving symplectic midpoint rule. A priori error estimates are derived for the POD reduced dynamical system. Numerical results for one and two dimensional NLS equations...
متن کاملModel Order Reduction for Nonlinear IC Models
Model order reduction is a mathematical technique to transform nonlinear dynamical models into smaller ones, that are easier to analyze. In this paper we demonstrate how model order reduction can be applied to nonlinear electronic circuits. First we give an introduction to this important topic. For linear time-invariant systems there exist already some well-known techniques, like Truncated Bala...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Modelling and Numerical Analysis
سال: 2021
ISSN: ['0764-583X', '1290-3841']
DOI: https://doi.org/10.1051/m2an/2020057